Just want to clarify, this is not my Substack, I’m just sharing this because I found it insightful.

The author describes himself as a “fractional CTO”(no clue what that means, don’t ask me) and advisor. His clients asked him how they could leverage AI. He decided to experience it for himself. From the author(emphasis mine):

I forced myself to use Claude Code exclusively to build a product. Three months. Not a single line of code written by me. I wanted to experience what my clients were considering—100% AI adoption. I needed to know firsthand why that 95% failure rate exists.

I got the product launched. It worked. I was proud of what I’d created. Then came the moment that validated every concern in that MIT study: I needed to make a small change and realized I wasn’t confident I could do it. My own product, built under my direction, and I’d lost confidence in my ability to modify it.

Now when clients ask me about AI adoption, I can tell them exactly what 100% looks like: it looks like failure. Not immediate failure—that’s the trap. Initial metrics look great. You ship faster. You feel productive. Then three months later, you realize nobody actually understands what you’ve built.

  • MangoCats@feddit.it
    link
    fedilink
    English
    arrow-up
    1
    ·
    6 hours ago

    making something quick that kind of works is nice… but why even do so in the first place if it’s already out there, maybe maintained but at least tested?

    In a sense, this is what LLMs are doing for you: regurgitating stuff that’s already out there. But… they are “bright” enough to remix the various bits into custom solutions. So there might already be a NWS API access app example, and a Waveshare display example, and so on, but there’s not a specific example that codes up a local weather display for the time period and parameters you want to see (like, temperature and precipitation every 15 minutes for the next 12 hours at a specific location) on the particular display you have. Oh, and would you rather build that in C++ instead of Python? Yeah, LLMs are actually pretty good at remixing little stuff like that into things you’re not going to find exact examples of ready to your spec.