Reading the comments, it would seem most everyone here thinks that the usefulness of the steam is done when it gets used to turn a turbine at high pressure.
The steam can be used for much more than once. In the 1800’s and early 1900s when steam ran trains and ships, they built double and triple expansion engines that took the energy of the steam two and three times before it was done. It doesn’t need to be one and done. And when the energy is done being harvested for power generation, it can used for other things. Engineers today aren’t dumber than the ones in the 1800s.
I can remember a small rural Minnesota town that had their own coal fired electric plant. (Built back before the REA was a thing). They took the left over steam from power generation and then piped it to around 200 homes in the town and heated them with the leftover steam. While a bit costly to install, it was dirt cheap to run. Those homes lost all that when the power plant was shut down and they had to switch to either natural gas, fuel oil, LP, or electricity.
So don’t get hung up on just the power generation. Think what could be beyond that point.
Also the water is just a medium for energy transfer; it can be reused & recycled in near perpetuity in a closed system.
We’re used to open systems with water in power stations, including cooling towers etc, because water is abundant on earth so it’s cheaper to just dump it back into the atmosphere; we probably take the whole thing for granted.
But it could be engineered to be a closed system a bit like a coolant in a refrigeration unit cycling back and forth. And it probably will need to be a closed system in the future in space where water will be incredibly precious.
A good example of how you can do amazing things with steam is looking at the very last of the steam locomotives. Before they switched to diesel or electric, the steam locomotives were engineering masterpieces. Yes, you still got the classic steam locomotive puffs of steam coming out of the locomotive, but they only let the steam go once they had extracted the maximum possible energy from it.
Reading the comments, it would seem most everyone here thinks that the usefulness of the steam is done when it gets used to turn a turbine at high pressure.
The steam can be used for much more than once. In the 1800’s and early 1900s when steam ran trains and ships, they built double and triple expansion engines that took the energy of the steam two and three times before it was done. It doesn’t need to be one and done. And when the energy is done being harvested for power generation, it can used for other things. Engineers today aren’t dumber than the ones in the 1800s.
I can remember a small rural Minnesota town that had their own coal fired electric plant. (Built back before the REA was a thing). They took the left over steam from power generation and then piped it to around 200 homes in the town and heated them with the leftover steam. While a bit costly to install, it was dirt cheap to run. Those homes lost all that when the power plant was shut down and they had to switch to either natural gas, fuel oil, LP, or electricity.
So don’t get hung up on just the power generation. Think what could be beyond that point.
Also the water is just a medium for energy transfer; it can be reused & recycled in near perpetuity in a closed system.
We’re used to open systems with water in power stations, including cooling towers etc, because water is abundant on earth so it’s cheaper to just dump it back into the atmosphere; we probably take the whole thing for granted.
But it could be engineered to be a closed system a bit like a coolant in a refrigeration unit cycling back and forth. And it probably will need to be a closed system in the future in space where water will be incredibly precious.
A good example of how you can do amazing things with steam is looking at the very last of the steam locomotives. Before they switched to diesel or electric, the steam locomotives were engineering masterpieces. Yes, you still got the classic steam locomotive puffs of steam coming out of the locomotive, but they only let the steam go once they had extracted the maximum possible energy from it.
Here’s a good video going over the whole design.
Steam had several technical and power limitations. It was dropped very quickly when electrification was an option.