

I think most of the work is in the fact that there often isn’t an “equivalent call”, and it can be quite a lot of code to make it work. One funny thing is the whole esync-fsync-ntsync issue, where synchronization is done differently on Linux and on windows, and translating it was a big performance hit, and difficult to do accurately. If I understood correctly, esync, fsync and ntsync were a series of kernel patches implementing additional synchronization code in the kernel, with ntsync actually replicating the windows style.







Both java and go seem excessively complex at runtime for fundamental system utilities, featuring garbage collection. Rust, on the other hand, keeps the complexity in the compiler and source, keeping the runtime code simpler. And of course it’s doing that while trying to make it easier to manage memory and harder to make mistakes, without forcing extra runtime logic on you.